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Components which are placed in a finite or infinite space have integer numbers 
as possible states. They interact in a discrete time in a local deterministic way, 
in addition to which all the components' states are incremented at every time 
step by independent identically distributed random variables. We assume that 
the deterministic interaction function is translation-invariant and monotonic 
and that its values are between the minimum and the maximum of its argu- 
ments. Theorems 1 and 2 (based on propositions which we give in a separate 
Part II), give sufficient conditions for a system to have an invariant distribution 
or a bounded mean. Other statements, proved herein, provide background for 
them by giving conditions when a system has no invariant distribution or the 
mean of its components' states tends to infinity. All our main results use one 
and the same geometrical criterion. 

KEY WORDS: Random process; local interaction; critical phenomena; 
invariant distribution; growth; eroder; convexity. 

M o s t  in te rac t ing  r a n d o m  processes  ( I R P )  cons idered  till n o w  have  com-  

pac t  sets of  states of  every  c o m p o n e n t .  (These  sets a re  usual ly  finite, often 

they have  two  e lements . )  I R P  with  c o m p a c t  sets of  states have  at least one  
invar ian t  d i s t r ibu t ion  (see, for example ,  P r o p o s i t i o n  2.5 on  p. 25 of  ref. 14) 

and its un iqueness  (which m a y  be cal led "e rgod ic i ty" )  is often at  the center  
of a t ten t ion .  It  was p roved  long  ago  (15"16) that  any system of a wide class 

has on ly  one  invar ian t  d is t r ibut ion ,  p rov ided  the noise  is s t rong  enough .  
O n  the o the r  hand,  refs. 10-13, 7, and  2 used the c o n t o u r  m e t h o d  and  its 

ramif ied vers ion  to present  systems which  have  m o r e  than  one  invar ian t  

d i s t r ibu t ion  with  any small  e n o u g h  noise. (See also a survey (~4~ which 

covers  s o m e  of  these deve lopmen t s . )  T o g e t h e r  these two g roups  of  results 
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showed the existence of "critical phenomena," that is, transition from a 
unique to nonunique invariant distribution due to a continuous change of 
parameters. 

Throughout our paper, every component of a system has Z, the set of 
integer numbers, as the set of its possible states. ZM is the ring of residues 
modulo M. Components of the system, denoted s, are placed in the Space, 
which is Z d in the infinite and Z d in the finite case. At every step of the 
discrete time t every component calculates its new state x(s ,  t), applying 
one and the same t ransi t ion f u n c t i o n  f: Z"~--~Z to the states of its 
"neighbors" at the m previous moments of time, after which the com- 
ponent's state grows by a random variable (; all these random increments 
are mutually independent. 

Now, before asking how many invariant distributions a system has, 
it is appropriate to ask if it has any at all. It is this, more preliminary 
question which we partially answer here. Another, but related question, 
which we also partially answer, is how the system's averages behave, which 
are the expectations of x ( s ,  t), as t--* oo. If the initial distribution is 
space-uniform, these expectations do not depend on s, and we denote them 
E,. Theorems 1 and 2, our main results, give sufficient conditions (which 
involve the geometry of interaction) for a system to have at least one 
invariant distribution in spite of the presence of a random noise and for 
a system's average not to grow beyond a constant. They are based on 
propositions, which we put in a separate Part II. ~15~ Other results include 
Propositions 1-3, which provide background for our theorems, being their 
converses. Proposition 4 uses the same geometrical criterion to tell whether 
a deterministic system is an "eroder," that is, turns every initial condition 
with a finite set of nonzero components into "all zeros" after a finite time. 
Taken together, our results show the existence of "critical phenomena." 
In our case this means transition from existence to nonexistence of an 
invariant distribution of from bounded to unbounded growth due to a 
continuous change of parameters. 

1. D E F I N I T I O N S  A N D  F O R M U L A T I O N S  

Denote 

T i m e =  { t E Z l  t~> - m }  

V= Space x Time = { (s, t) l s  ~ Space, t E Time} 

Elements of V are called po in t s  and subsets of V arc called poin t -se ts .  The 
origin (0, 0) of V is denoted 0. If v = (s, t) ~ 1,I, then s ( v )  = s and t ( v )  = t. 
Points with t~ [ - m , -  1] are called initial, those with t />0 are called 
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inner. Vinit and V i . . . .  denote the sets of initial and inner points. Every inner 
points (s, t) has n neighbors 

N~(s , t )=(s - - z l s ,  t --dt i) ,  where A t ~ [ 1 ,  m]  foral l  i = 1  ..... n 

The neighborhood N(v) of an inner point v is the set of  its neighbors. 
Initial points have no neighbors. To  every point v =  (s, t )~  V there 
corresponds a variable x(v)=x(s ,  t ) e Z ,  the state of this point. The set 
X =  Z V is the configuration space whose elements x are called configura- 
tions. There are mutually independent hidden variables h(v) for all inner 
points v, every one of which is distributed as a random integer variable ft. 
Thus we have the hidden distribution on the configuration space of hidden 
variables. To any transition function, any neighbor vectors, any distribu- 
tion of  ~, and any M in the finite case, there corresponds a process, i.e., the 
distribution on X induced by the hidden distribution with the map defined 
in the following inductive way: 

x(v)=~y(v),  if t ( v ) < 0  (t) 
[ f (x(N(v)))+h(v)  if t(v)>~O 

where the distribution of the initial variables y(- )  serves as a parameter. 
We may also interpret our  systems as linear operators P: J / ~  J /  

which act on the set Jr '  of probability measures on the configuration space 
Cm which corresponds to any m consecutive moments  of time. We may call 
Ix e Jr invariant if P(/z) = # and interpret some of our  results as those about  
the existence of an invariant distribution. In the deterministic case P turns 
into a deterministic operator  D which acts on Cm. 

We assume that our  transition function is bounded by the minimum 
and the maximum of its arguments 

Vx~ ..... x~: min{xl  ..... x .}  ~< f(xt ..... x . )  ~< max{x1 ..... x .}  (2) 

translation-invariant in the set of states 

Vxl ..... x . ,  c : f ( x l + c  ..... x . + c ) = f ( x l  ..... x . ) + c  (3) 

and monotonic  

x ~ y ~ f ( x ) ~ f ( y )  (4) 

where x = (x I ..... x.),  y = (Yl ..... y .) ,  and x<~y means that xi<~y~ for all i. 
We call (2)-(4) our  "standard assumptions." All our  theorems and proposi- 
tions are true under these assumptions, but some are true under weaker 
ones. In the most  important  cases we specify what we actually need to 
assume. 
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The central idea of our paper  is to connect the behavior  of our  
systems with their geometrical  "properties. The following definitions make  
this possible. Call a set S ~ { 1  ..... n} a drag if whenever f(xl ..... x , ) =  
max{x  I ..... x,,}, there is such i t S  that  x i = m a x { x l  ..... x,,}. To  every drag 
S there corresponds an O-drag S e =  { ( - A s ; , - - z t t t ) l i E S } .  (O-drags are 
analogs of zero-sets of ref. 12.) Thus we have the family ~ of drags 
which are subsets of  { 1 ..... n } and the family ~ e  of O-drags, or drags of ~9, 
which are subsets of N(~).  Due to uniformity, we may  call v-drags the sets 
resulting from ~-drags  by a shift at the vector v. 

Note  that  in the infinite case V is a subset of Z a+l and therefore a 
subset of R d+ I. Using this, we can consider any d~-drag as a subset 
of R d§ 1. Let conv(S)  denote the convex hull of any set S c  R d§ i. For  any 
real number  k and any set S c R  d+l we denote k . S =  {k.v[ v~S}  and 
ray(S)  = I,.) {k.  S Ik/>0}. The following subset of R a+l plays the key role 
in our paper: 

a= (-] {ray(conv(S))  I S e ~ }  

This formula certainly makes  sense, because the family of drags is non- 
empty,  since the set { 1 ..... n} always is a drag. (And the empty  set never is 
a drag.) Of  course, a always contains the origin (.9. It it contains nothing 
else, we write a = {(.9}; otherwise, a r {d~}. In the analogous way we can 
define antidrags, C-antidrags, and the set anti-a simply by changing the 
signs of all states. 

T h e o r e m  1. For  any system in which both a and anti-a equal {(_9}, 
there is a positive constant  E, for which the following holds: whenever 

Prob(~ ~>k) ~< e k and Prob(~ <~ - k )  ~< ~ k for all k =  1 ,2 ,3  .... 

the system has at least one invariant distribution. 

To  prove Theorem 1, we need only (2) of our "s tandard assumptions."  
The following Theorem 2 and Proposi t ions 2 and 3 are about  the 

initial condition "all zeros": y(v) = 0 for all initial v. In this case the expec- 
tation E(x(s, t)) does not depend on s, and we call it E,. In the infinite case 
we ask whether E, remains bounded forever (from above or from below or 
both). In the finite case we denote TE the time (which may be infinite) 
when E, first exceeds a given boundary  E and ask how TE behaves as a 
function of the system's size M. 

T h e o r e m  2. Take  such a transition function and neighbor vectors 
that a = {~}. Take  the initial condition "all zeros." Then there is such a 
positive constant  e that  whenever Prob(~ >/k)~< ek for all positive k: 
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1. In the infinite system E, never exceeds a constant. 

2. In the finite systems TE has a lower bound which grows as an 
exponent in M for large enough E. 

To prove Theorem 2, we need nothing more than the right inequality 
of (2) of our "standard assumptions." 

Behavior, described by Theorems 1 and 2, is an analog of nonunique- 
ness of an invariant distribution (which may be called "nonergodicity") of 
systems with a finite set of states of every component.  It is unclear what 
might serve as an analog of "ergodicity" in our case. It seems that this 
analog should state that every system of some rich class has no invariant 
distribution or displays an unbounded growth, provided the noise is strong 
enough. Proposit ions 1-3 are steps in this direction. 

Proposition 1. Let P r o b ( ( =  0 ) <  1. Then in the finite case there is 
no invariant distribution. 

If the distribution of ( has a mean, E, does not exceed a linear function 
of time. We say that E, has a linear lower bound with a constant C > 0 if 
E, > /C.  t for all t. Existence of a linear lower bound implies Te ~< const �9 E. 

Proposition 2. Take the initial condition "all zeros" and let 
P r o b ( ( < 0 ) = 0  and P r o b ( ( = 0 ) < l / n .  Then E, tends to infinity when 
t--* ~ and has a linear lower bound with one and the same constant for 
the infinite and finite systems with all M. 

Proposition 3. Take such a transition function and neighbor vec- 
tors that a ~ {(9 }. Take the initial condition "all zeros." Let Prob((  < 0 ) =  0 
and Prob( (  > 0) > 0. Then E, tends to infinity when t ~ ~ and has a linear 
lower bound with one and the same constant for the infinite and finite 
systems with all M. 

The next and last one of our main propositions is about  the 
deterministic case ( = 0 .  (We do not single out other deterministic cases 

= k, k :~ 0.) In this case for any initial condition y the resulting process is 
concentrated in one configuration called trajectory and denoted ytr. Call 
a configuration (and thereby a t ra jec tory)f in i tary  if it has a finite set of 
nonzero components.  Say that a deterministic system is an eroder if for any 
finitary initial condition the resulting trajectory is also finitary. 

P r o p o s i t i O n  4. An infinite deterministic system is an eroder if and 
only if both a and anti-a equal {(9 }. 

Let us present several examples to which we shall refer. In all of them 
zlti= 1 for all i = 1 ..... n. Thus, to specify neighbor vectors we need only to 
present their space components.  

82274/I-2-7 
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Example O. Take any space and let n = 1, that is, there is only one 
neighbor vector with an arbitrary space component. Let f ( x ) =  x. (There is 
essentially no interaction here.) 

Example 1. Space is Z or ZM 
neighbor vectors. Assume that the two 

and n = 2 ,  that is, there are two 
neighbor vectors are not collinear 

and let f(x, y ) = m i n ( x ,  y). (If we take collinear neighbor vectors in this 
example, it becomes almost as trivial as the previous one.) 

E x a m p l e  2. Space is Z 2 or Z ~  and n = 4 ,  that is, there are four 
neighbor vectors. Their space components are 

A s  t = (0 ,  0 ) ,  z i s 2  = (0 ,  - 1 ), A s  3 = ( - -  1, 0 ) ,  A s 4  = ( - -  1, - -  1 ) 

and 

f(Xl, x2, x3, x4)= min{max{x~, x2}, max{x3, x4}} 

In the next examples Space is Z 2 or Z ~  and n = 3. Space components 
of the three neighbor vectors are 

Asl = (0, 1), As2 = (1, 0), As3 = (0, 0 ) 

(This is known as the NEC neighborhood, i.e., North, East, Center; see, 
e.g., ref. 1; see also refs. 7, 3, and4.)  It remains to define the transition 
function in every example. 

E x a m p l e  3. f(x, y ,z )  equals the median of its three arguments, 
where the median of 2 k - 1  numbers equals the kth one among them if 
they are sorted in the increasing order. 

Example 4. f(x, y , z )  equals the arithmetic mean of its three 
arguments, rounded to the nearest integer. 

Example 5. 

f(x, y, z) = 

" m a x { x , y , z }  

max{x, y, z} - 1 

if at least two among x, y, z 

equal max{x, y, z} 

otherwise 

All our examples satisfy our standard assumptions. Let us examine which 
drags they have. First note that if S is a drag and S c S' _~ { 1 ..... n}, then 
S' is also a drag. Thus the family of drags is completely described as soon 
as we list all the minimal drags. (A minimal drag is a drag, all of whose 
proper subsets are not drags. The same about O-drags.) Of  course, we can 
take intersection over minimal d<drags rather than over all (_0-drags in the 
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definition of tr. In Example  0 the set tr is a half-line emanat ing from (9 in the 
direction of the (unique) neighbor vector. In Example  1 there are two mini- 
mal drags: {1 } and {2}, whence a =  {(9}. In Example  2 also there are two 
minimal drags: {1, 2} and {3, 4}, whence again t r=  {(9}. In Examples 3-5 
there are three minimal  drags: {1, 2}, {1, 3 }, and {2, 3}. Since our three 
neighbor vectors are not coplanar,  cr = {(9} in all these cases. To  obtain 
more  examples in which a :~ {(9}, it is sufficient to change our Exam- 
ples 3-5 just in one respect: take ds~, ~Js2, and As3 that  belong to a straight 
line. Thus we see that  systems with one and the same transition function, 
but different neighbor vectors, can behave in quite different ways. 

Informally,  the following assumption means that  the transition 
function does not give preference to greater or smaller values: 

Vxl ..... x,,, c: f ( c - -x l , . . . , c - -x , , )=c- - f (x l  ..... x,,) (5) 

Whenever  it holds, every drag is an ant idrag and vice versa. Although we 
never formally use (5), it helps us to show that  Theorems 1 and 2 are not 
trivial, because they apply to Examples  3-5. Examples  0, 3, and 4 satisfy 
(5). Example  5 may  even seem to give preference to greater values. 

N o t e  1. Under  our s tandard assumptions,  a set S _ { 1  ..... n} is a 
drag if and only if f(z i ..... z,,) = 0, where every zi equals 0 if i ~ S and equals 
1 otherwise. 

N o t e  2. For  any transition function f we can define another  transi- 
tion function f+ by the following rule, where Max denotes max{x~,..., x ,} :  

~ M a x - 1  iftheset { i [ x i < M a x }  isadrag 
f+ (xl ..... x,,) = [.Max otherwise 

Applied to Example  4, this rule gives Example 5. Generally, f+ is always 
monotonic ,  has the same drags as f, and f~< f+. Substitution of an arbi trary 
f by f+ helps us to avoid assuming (4) when proving Theorems 1 and 2 
and some other statements. 

Let us introduce some notat ions which we shall use. Choose any norm 
on R d+ 1, define distance dist(v, w ) =  n o r m ( v - w ) ,  and let d iam(S)  denote 
the diameter  of any set S. Denote  

A =max{norm(Asi, Ati) l i=  1 ..... n} 

For any real function x on a nonempty  set S we denote 

max(x l S )=max{x(e)  l ee  S} 

min(x l S )=min{x(e)  l ee  S} 

dev(x) = {v ~ S I x(v) v~ 0} 
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2. PROOF OF PROPOSITION 1 

The following argument does not use (4). Note  that in the finite case 
our system is a Markov  chain with a countable set of states. Suppose that 
it has an invariant distribution p. We may assume tha t /a  is concentrated 
in one recurrent class. Take some state a in this class. Let D: C,, r--. Cm be 
our deterministic operator. The sequence D"(a) must be periodic starting 
from some place, because all the components  of its members have states in 
the range between the minimal and the maximal components  ofa.  Let T 
denote the length of its period. Choose a member s of this period and let 
S denote the set of shifts of s in the set of states. (We say that s' is a shift 
of s by the number  k if all the components  of s' are k greater than the 
corresponding components  ofs.) Consider another Markov chain, whose 
set of states is S, in which the probability of going from a state b to a state 
c equals the following conditional probability of the original process: the 
probability that x = c on condition that x is the first state belonging to S 
where we get having started from b. The restriction of p to S gives us a 
nondegenerate invariant distribution of  the new process. Note  that the 
new process is isomorphic to a uniform random walk on an integer line. 
If P r o b ( ~ = k ) - - 1  for some k # 0 ,  this walk is a nonzero shift, which is 
evidently transient. Otherwise there are two different numbers, say k~ and 
k2, such that P r o b ( ( = k l ) > 0  and P r o b ( ( = k 2 ) > 0 .  Let us prove that in 
this case our  random walk is transient also. Consider the old process 
starting from s. The first, deterministic, part of our  operator  transforms it 
into the state D(s). Now, when the random part is applied, we go with 
positive probabilities to D(s) shifted by kl and k 2. In the same way, after 
T steps, we go with positive probabilities to at least two different shifts of 
D r ( s ) = s .  II 

3. PROOF OF PROPOSITION 2 

Of all our standard assumptions we need only the left inequality of (2) 
here. The well-known monotonici ty arguments reduce the proof  to the case 

f(xl ..... x , )  = min{x I ..... x,, } (6) 

and 

Prob(~ = O) = 1 - and P r o b ( ~ - - 1 ) = e  where ~ > l - 1 / n  

Given (6), every single number  from 1 to n is a drag, whence a consists 
only of the origin whenever there are at least two noncollinear neighbor 



Interacting Growth Systems. I 99 

vectors. Example 1 belongs to this case. We may call (6) "the percolation 
process," due to the following representation. Let V be the directed graph 
which has V as its set of vertices, and edges that go to every point from its 
neighbors. Reconstruct V into another directed graph V' by stretching 
every its vertex v into a "new" directed edge and assign to this edge v a 
random time delay that equals h(v). "Old" edges, which came from V, have 
zero delay. Define the time delay of a path in V' as the sum of delays along 
it. Note  that x(v)  equals the minimum of delays of directed paths from 
initial points to v, which is well known as the time of first-passage percola- 
tion from Vinit to v. Thus, the theory of first-passage percolation may be 
used here, but in fact straightforward estimations are sufficient. 

Take an inner point v = (s, t). For  any C the probability that x(v)  <~ C 
equals the probability that there is a path from Vi,it to v whose delay is not 
more than C. The number  of these paths does not exceed n'. Now let 
length(H) of a path H denote the number  of "new" edges in it. In our  case 
every path's length is not  less than t/m. Delay of a path of length l is 
distributed as Bt.~, the classical Bernoullian sum of ! independent random 
variables, every one of which equals 1 with probability e and 0 with 
probability 1 - e. It is well known that for any 6 > 0 and any 7 < 1 there is 
such e < 1 that Prob(B~.~ ~< 7" l) ~< const �9 6 ~ for all L Applying this to our 
case, one sees that 

Prob(delay(H)  ~ 7" length(H)) ~< const .  6 lengthcrI) <. const-  6 '/'' 

Thus 

Prob(x(v)  ~< 7" t /m) <~ const �9 6 '/'~. n' = const �9 (61/''. n)' 

Choose such 6 that 61/'~ -n ~< 1/2. Then for any y < 1 there is such e < 1 that 

Prob(x(v)  <~ 7. t /m) <~ const .  (�89 

whence E, >1 y �9 t /m - const. Since E, > 0 for all t > 0, we may cross out the 
constant. | 

4. A B O U T  T H E O R E M S  1 A N D  2 

Using the well-known convexity, compactness, and monotonici ty  
arguments (explained, for example, on pp. 25-31 of ref. 14), our Theorems 1 
and 2 can be deduced from Proposit ions 1 and 2 of our Part  II. ~5~ Here we 
preface arguments of Part  II  with some explanations. 

The general idea comes from the contour  method:  to estimate the 
probability of the event x(p)>>.q by covering it by several events and 
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estimating the sum of their probabilities by combinator ia l  means. We shall 
call "inquest" the process of constructing these events. We start  by looking 
at the point v to see what  "responsibility" it bears for having a positive 
state. If x(p)=h(p), the "responsibility" remains completely with this 
point, and we do not need to go further. Otherwise x(p) "inherited" at least 
part  of its positive value from its neighbors, and we "interrogate" them in 
the same way, and so on. Thus we trace our event back to its ult imate 
causes and split it into several cases. In each case several hidden variables 
must  be positive to ensure our  event. If k denotes the sum of their values, 
the crucial point  of our argument  is to obtain an exponential  (in k) estima- 
tion for the number  of corresponding cases; we achieve this by presenting 
a geometrical  construct ion (a "branching contour")  whose complexity does 
not exceed cons t ,  k. This construct ion is based on the Linear L e m m a  (see 
below), which shows that  the condition ~ = {~} given, the further into the 
past  our "inquest" goes, the greater is the space region involved into it. 

Let us explain in more  detail how to estimate P r o b ( x ( p ) > 0 )  in 
Example  1 if Prob(~ --- 0) = 1 - e and Prob(~ = 1 ) = e. In this case we do not 
need to discriminate between positive values of states. In other words, we 
may  assume that  the process is defined by 

x(v" ~ . _ _ __ _ . ( Y ( V )  if t ( v ) < O  
)=(max~f(x(N(v))),h(v)~ if t(v)>~O 

(7) 

rather than by (1). This process was examined long ago~9'l~ in the 
survey c141 it is described as Example  1.2 and explained on pp. 9-10 and 
74-78. The percolation graph V' in this case is planar  and therefore has a 
dual one. Every path  in the dual graph serves as a "fence" which separates 
our point p from initial points. (One fence is shown in Fig. 1.1 on p. 10 in 
ref. 14.) x(p)> 0 iff there is a fence, along which all the hidden variables are 
positive. In the infinite case it is easy to prove that  the number  of those 
fences, which include k hidden variables, does not exceed 27 k. This leads to 
the estimation 

Prob(x(p)>~ 1)~< ~ (27e) k 
k = l  

In the same vein x(p)>l q if at least q fences separate our point  p from 
initial points, whence 

P r o b ( x ( p )  >t q) ~< (27e) k 
\ k =  1 

which proves the first assertion of Theorem 2 for Example  1. Substituting 
(7) for (1) works for Example  2 also: with a minor  modification it turns 
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it into Example 1.5 of ref. 14 (which comes originally from an earlier 
paperC~)). Although Example2 does not allow such a straightforward 
percolation representation, our combinatorial constructions come to 
contours in this case also. 

5. T H E  L I N E A R  L E M M A  

The following lemma clarifies the geometrical meaning of the condi- 
tion tr = {O}. Remember that a linear function L on a linear space with the 
origin O is called homogeneous if L (O)=  0. 

L o m m a  1, Condition a =  {0} is equivalent to the following: There 
are such a number r~<d+ 1 and such r homogeneous linear functions 
LI,...,  Lr on R a+ l that 

LI + "'" q-Lr  = -- t  (8) 

and 

for every i the set { e e N ( O ) [ L i ( e ) < . . . O }  is an O-drag (9) 

Proof .  First, assume that there are such homogeneous linear func- 
tions LI ..... Lr on R d§ that (8) and (9) hold. Assume that there is some 
nonzero point v e a and come to a contradiction. Note that t ( v ) < 0 .  For 
i = 1  ..... n denote S ~ = { w ~ N ( O )  I L i ( w ) ~ O  }. From (9), S~ is an O-drag, 
whence vEray(conv(S,.)), which means that there is k > 0  for which 
k .  v e conv(S~). Since values of Li on all elements of S~ are nonpositive, its 
value on k .  v is nonpositive also. Therefore, the value of Li  on o is non- 
positive. Thus, the values of all our functions L~ ..... Lr on v are nonpositive, 
which contradicts (8). 

Now assume that a = {0 } and prove the existence of functions L; in 
question. For any finite S c R a+l the set ray(conv(S)) can be represented 
as an intersection of several half-spaces. (A half-space is a set in R a+ ~, 
where some homogeneous linear function is nonnegative.) Apply this to 
C0-drags, and one has several drag-half-spaces whose intersection is {O}. 
(A drag-half-space is a half-space whose intersection with N(O) is an O-drag.) 
For every one of these drag-half-spaces we introduce a homogeneous linear 
function f i  which is nonpositive on it and only on it. We know that the 
origin is the only point in R a+' where all f~ are nonpositive. This allows 
us to apply Theorem 21.3 of ref. 8 (a version of Helly's theorem) to the 
hyperplane H =  {(s, t) [ t --- - 1  }, restrictions of our functions to it, and any 
nonempty closed convex set C ~_/7. We take C =/7.  Thus, there exist such 
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nonnegative real numbers 2,., at most  d +  1 of which are positive, that for 
some e > 0 

VveC: ~ 2i.f`.(v)>-e 
i 

Since the left part is linear and bounded from below by a positive constant 
on C, it has to be a positive constant on C: 

whence 

Vv e C: ~ 2, . fi(v) = 3 = const >~ e 
i 

u  ~ 2i'fi(v)= - 6 . t  
i 

Thus the functions L`.= 2`..fi fit (8) and (9). II 

Whenever the functions in question exist (that is, a = {(~}), we choose 
the smallest available value of r and some functions L I ..... Lr. We also 
denote 

A =max{Li(v) l i= 1 ..... r, norm(v) ~ 1} 

Let us see what the Linear Lemma gives for our examples. In Example 0, 
a r {(P}, whence the functions do not exist. When the functions exist, the 
smallest possible value of their number  r is 2. This takes place in Exam- 
ple 1, and we can take L1 = s -  t, L2 = - s ,  where s is the space coordinate. 
In Example 2 also r = 2 and we can take L 1 = s !  - t ,  L 2 = --Sl, where s~ is 
the first space coordinate. Generally, the constructions of our  Part  II  come 
to the traditional (that is, nonbranching)  contours whenever r=2. (See 
ref. 1 l, which concentrates on this case.) 

In Examples 3-5, r = 3  and we take L~ =s~,  L2=s2, L 3 =  - s ~ - s 2 - t .  
Whenever r >/3, constructions of our Part  II  ramify. However, Example 3 
is also more easy to manage than the general case. (I thank one of my 
referees who noticed this.) Here again we can dump all the positive values 
of x(p) together, when speaking about  P r o b ( x ( v ) > 0 ) ,  that is, use (7) 
instead of (1). This turns our Example 3 into Example 1 of ref. 12, whereby 
existence of some critical behavior in the infinite case is assured: when t 
tends to ~ ,  the percentage of zeros tends to a limit which equals 0 for large 
values of e, but is positive for small values of e. The former fact is well 
known (see, for example, Proposit ion 2.17 in ref. 14), the latter one follows 
from Theorem 5 in ref. 12. In the same way the main result of ref. 2 follows 
from the more general Proposi t ion 2 of our Part  II. 

To prove our  theorems for Examples 4 and 5, the constructions 
developed in our  Part  II seem to be necessary, such as they are. 
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6. S E E D S  A N D  S T E M S  

Take any initial condition y, all of whose values are zeros and ones. 
F rom (2), the resulting trajectory's values are also zeros and ones. Let us 
call the sets 

{v~Vi , i t l y (v )=l  } and { v E V l y ( v ) = l }  (10) 

a seed and a stem, which grows from it, if the former is finite and the latter 
is infinite. We are going to prove that seeds exist. For  any A, B = R d+ ~ and 
c ~ R a+ ~ denote 

A + e = { a + e l a ~ A }  and A + B = { a + b l a ~ A , b ~ B }  

Call A + c the shift of A by the vector c. Say that A c R d+ 1 is obtuse for 
B c R  d+l if 

V c ~ R a + l :  ( A + c ) n B = ~ = ~ ( A + c ) n c o n v ( B ) = ~  

Note that any sets A, B, C c R d+ J given, if A is obtuse for B, then any shift 
of A + C is obtuse for any shift of  B. Also it is known that for any bounded 
A c R d+a there is a bounded obtuse set, because the set - k . c o n v ( A )  is 
obtuse for A whenever k>~d+ 1 (see Lemma 11 in ref. 12). Hence for any 
finite collection of bounded sets and any positive number  R there is a 
bounded set which is obtuse for all of these sets and contains a sphere with 
a radius R. Now take any large enough bounded set P whch is obtuse for 
all drags, and so shifted that the time coordinates of all its points are less 
than - m .  Define S = ( P - p ) c ~  Vi,it and prove that S is a seed. For  this 
purpose let us prove by contradiction that the resulting stem contains the 
set T =  ( P - p ) n  V. Assume that T contains some points where the result- 
ing trajectory equals 0 and take one of them, v, whose time is minimal. To 
make the state of v equal to zero, some drag of v, say v + U, must. be filled 
with zeros. Let us prove that this is impossible. Note  that P - a  cannot 
intersect v + U because of the way we chose v. But, since P is obtuse for 
all drags (including U), P - a  also is, whence P - t r  cannot  intersect 
v + c o n v ( U ) .  But, on the other hand, ray(conv(U))  contains tr, whence 
conv(U) intersects all half-lines emanating from the origin, which belong to 
a, whence v + c o n v ( U )  intersects all half-lines emanating from v, which 
belong to v - t r .  Thus we get a contradiction, because any segment whose 
ends are v and any element of P is a piece of such a half-line and it is long 
enough to intersect v +conv(U) .  II 
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7. PROOF OF PROPOSITION 3 

From now on, shifts of seeds will be called seeds also. Take any system 
S whose tr:~ {tP}. Of course, tr contains a point (s, - 1 )  at which all the 
components of s are rational: s = (st ..... Sd), where s~ ..... Sat-~. Let k be the 
least common denominator of s~ ..... Sd. Let us consider another system S' 
with the same transition function, same time components of the neighbor 
vectors, and the following space components of the neighbor vectors: 
As~=k. (Asi-si.At~). Note that E, is the same for both systems for all t 
and that tr of the new system contains the point (0, - 1 ) .  Thus we have 
reduced the general case to the case when (0, - 1  )e  tr. 

Now S is a system whose o contains the point (0, - 1 ) .  Existence of 
seeds assures us that we can minorate this system (in the sense of pp. 27-29 
of ref. 14) by a wary process, which is defined as follows. [Wary processes 
do not fit into our general rule (1).] The configuration space is the same 
as that of the original process and the initial condition is "all zeros" also. 
But the neighborhoods W(.) of the wary process are larger that those of 
the original process. To define them, choose a large enough constant C and 
for every inner point v define W(v) as follows: 

W(v)= {w I dist(w, v)<~C, t(w)<t(v)} 

Whenever t > 0, define the map as follows: 

{ x((~: tt-1)+h(s'- 1 ) t) ifotherwiseX(S,t-1)<~min{x(w)Lwe W(s, t)} x(s, t)= 

Here every h(s, t) is independent of all the other hidden variables, and 

h(s,t)={lo with probability ~ 
with probability 1 - e 

Here e is a positive parameter. The idea behing these definitions is to 
choose e less than the probability that hidden variables of all points of a 
seed would be positive in the original process. Note also that in any wary 
process states of elements of the space never decrease as time goes on. 
Speaking about wary processes, we may use the same notation E, and term 
"linear lower bound" as before. We have reduced Proposition 3 to the 
following: In every wary process (with e > 0) the expectation E, has a linear 
lower bound. To prove this, it is sufficient to find a constant T for which 

E(x(s, kT))>~const.k for all k = 0 ,  1, 2 .... 

Now note that E(x(s, kT)) >1 E(x'(s, k)), where x'(s, k) are variables of the 
same wary process with e ' =  1 - ( I  - e ) r .  (This is because the opportunities 



Interacting Growth Systems. I 1 0 5  

to grow accumulate  during T time steps.) Thus, it is sufficient to find 
some e <  1 with which our  wary process has a linear lower bound. But 
this is certainly possible because every wary process is minorated by the 
percolation process (Section 3) with the same e and neighbors. II 

8. PROOF OF PROPOSITION 4. CASE a- - { (9}  

Call an initial condit ion nonnegative if all its components  are non- 
negative. 

Proposition 5. Take any infinite deterministic system with 
tr = {(9 }. For  any finitary nonnegative initial condition y: 

1. The resulting trajectory ytr is also finitary. 

2. diam(dev(ytr))  ~< const .  (d iam(dev(y))  + max(y ) )  

Each of these assertions implies P ropos i t ion4  in one direction. 
However,  we prove both,  because assertion 1 is more  easy to prove, but 
assertion 2 is more  precise. In both cases we need only the right inequality 
of (2) of our  s tandard assumptions.  

8.1. Proof of Assertion 1 of Proposition 5 

This can be proved by induction based on the following: Consider the 
infinite case. Assume t r=  {(9}. Take  any finitary nonnegative initial y. 
Then: 

(a) m a x ( y l  V ' r ) = m a x ( y l  Vi,,). 

(b) The set {v[ yt~(v)=max(y[ Vinit)} is finite. 

Here (a) comes from the right inequality of (2). Let us prove (b). Take  any 
v where ytr(v)=max(y). Any drag of v must contain a point u where 
ytr(u)=ytr(v). Thus for every i = 1  ..... r there is a point ueN(v) where 
y t r (u )=  ytr(v) and Li(u)<~Li(v). Applying this argument  inductively, we 
obtain an initial point wi where y(wi)=max(y) and L~(wi)<~Li(v) for 
every i =  1 ..... r . .Choose any woedev(y ) .  Then, using (8), 

L,iw,)= , , iwo-w,) -  
i = l  i = l  i = l  i = l  

~< r-  A -d iam(dev(y) )  + t(Wo) < r. A. diam(dev(y) )  I 
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8.2. Proof of Assertion 2 of  Proposition 5 

Choose some i~ {1 ..... r} and let Li be one of the functions provided 
by Lemma  1. Given any infinite increasing sequence K of real numbers  
k~ < k~ < k 3 < ... ,  let a (i, K)-stairs denote the following configuration z: 

V v ~ V : z ( v ) = ~  "0 if Li(v)<k~ 
~J if kj<~L,(v)<kj+,  

(A similar definition was used in ref. 6 for the one-dimensional  case.) Call 
a configuration x a supertrajectory if x(v)>~f(x(N(v))) for every inner 
point v. 

L e m m a  2. Assume 

Vj: k j + ~ - k j ~ > Z . A  .A (11) 

Then the (i, K)-stairs is a supertrajectory for any i =  1 ..... r. 

Proof. Let z be our  (i, K)-stairs and denote var(z I S ) =  max(z  I S ) -  
min(z I S). First prove that  var(z I N(v)) ~< 1 for every inner v. Assume the 
contrary:  there are such ul, u2~N(v) that  z (uz ) - z (u l ) />2 .  Then there is 
such j that Li(u~) < kj and L~(u2) >/kj+ t, whence 

L i ( u 2 ) -  L i (u l )> kj+ ~ - k j>1 2 .  A . A 

But this is impossible, since 

Li(u2) - Li(ul ) = Li(u2 - v) - Li(ul -- v) <~ 2. J �9 A 

Now assume that z(v) < f(z(N(v))) for some v. Since var(z [ N(v)) ~< 1, all 
the values of z at N(v) are in the range [ j , j +  1] for some j .  Thus, from 
the right inequality of (2), f (z(N(v)))~<j+ 1. Then, from our assumption,  
z<<.j. From (9) the set {e~N(v)  tLi(e)<~Li(v)} is a v-drag. Hence we see 
that z(v) cannot  be less than j, because it would mean that  the empty  set 
is a v-drag. Thus z ( v ) = L  and the set { e ~ N ( v ) ] z ( e ) = j }  is a v-drag, 
whence f (z (N(v)))= j, which contradicts our  assumption.  II 

Now to prove assertion 2. Call max( t  ] dev(x))  the lifetime of any 
configuration x. All we need to prove is that lifetime of any nonnegative 
initial y does not exceed 

const-  (d iam(dev(y) )  + m a x ( y  [ Vi,it)) (12) 

For  any real number  c denote 

i n t ( c )={~e l eas t i n t egerwh ich i sno t l e s s thanc  ifif C>0c~<0 
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For any point Vo and any constants C > 0 and C' the configuration 

x(v)  = Int(C- L~(v - Vo) + C') 

is a stairs. This stairs satisfies (11), provided C~<(2.A . A ) - L  Now take 
any finitary nonnegative initial configuration y, choose any Vo e dev(y), and 
define another configuration 

x(v)  = min{Int(C.  L,(v  - %) + C') I i =  1 ..... r} 

where 

C =  ( 2 . z i . A )  -~ and C ' = C . A . d i a m ( d e v ( y ) ) + m a x ( y l  Vinit ) 

Let us prove that y(v)<~ x(v)  for every initial v. This is evident if y ( v ) =  O. 
Now let y(v) > 0. Then 

x(v)  >~ C.  L i ( v -  Vo) + C' 

Now the relation y t r ~  X in general 
standard monotonicity arguments. 

>/C' - C.  A. n o r m ( v -  %) 

/> C ' -  C.  A �9 diam(dev(y)) 

/> max(y I Vi,it)/> y(v)  

can be proved by induction, using the 
(Remember that Note 2 allows us to 

assume that the transition function is monotonic.) Thus our estimate (12) 
for the lifetime of y follows from the same estimate for the lifetime of x and 
it remains to prove the latter one. Take any point v where x ( v ) >  0. For 
all i = 1  ..... r, I n t ( C . L ~ ( v - v o ) + C i ) > O ,  whence C . L ~ ( v - v o ) + C ~ > O ,  
whence L i ( v - v o ) > - C ~ / C .  Summing the last inequalities and using (8) 
proves that 

r" C' 
t(v) < t(v -- Vo) <~ T = r.  A .  diam(dev(y)) + 2. r .  zJ. A - max(y  I Vinit) I 

9. PROOF OF PROPOSITION 4. CASE o ~ { # }  

P r o p o s i t i o n  6. Take any infinite deterministic system with 
a # {d~ }. For any natural number T there is such a finitary initial condition 
y that for every "t there is such s that ytr(s, t )=  T. 

Proposition 6 completes the proof of Proposition 4. For the case 
T =  1 we have already proved it when we proved the existence of seeds 
(Section 6). To prove it in general; take any seed S and a large enough 
constant R and define T seeds S~ ..... S r  as follows: S~ is the intersection of 
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Vinit with the (vector) sum of S and the sphere with the center (_9 and the 
radius ( T - i ) .  R. (Thus Sr coincides with S.) Now define a finitary initial 
condition y as follows: 

f O a x { i l v e S i }  if v~S~ 
y(v) = otherwise 

Now every Si is filled with states equal to i or greater, and is surrounded 
by a thick enough layer of states equal to i -  I or greater. Let us prove that 
in the resulting trajectory the i th stem will be filled with states equal to i 
or greater. This is based on the fact that  

(VS~ ~ :  max{xi  [ i ~  S} = max{x1 ..... x,,}) => f(x~ ..... x , )  = max{xl  ..... x ,}  

(13) 

for any xl ..... x . ~ { 0 , 1 } .  ( ~  is the family of drags.) To  prove this 
by contradiction, take any x~ ..... x . ~  {0, 1}, assume m a x { x i ] i t S }  = 
max{x~ ..... x .}  for all S ~ ,  but f(x~ ..... x.)<max{xl  ..... x .} .  Hence and 
from (2) 

f(xl ..... x , )  = 0 and max{x l  ..... x,} = 1 (14) 

But from Note  1 the set S =  {il x i = 0 }  is a drag, whence 

max{x~ ..... x,,} = m a x { x i  [ i ~ S }  = 0  

which contradicts (14). I 
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